Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations.

Identifieur interne : 000211 ( Main/Exploration ); précédent : 000210; suivant : 000212

Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations.

Auteurs : Jun-Jun Liu [Canada] ; Richard A. Sniezko [États-Unis] ; Robert Sissons [Canada] ; Jodie Krakowski [Canada] ; Genoa Alger [Canada] ; Anna W. Schoettle [États-Unis] ; Holly Williams [Canada] ; Arezoo Zamany [Canada] ; Rachel A. Zitomer [États-Unis] ; Angelia Kegley [États-Unis]

Source :

RBID : pubmed:33042181

Abstract

Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.

DOI: 10.3389/fpls.2020.557672
PubMed: 33042181
PubMed Central: PMC7522202


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations.</title>
<author>
<name sortKey="Liu, Jun Jun" sort="Liu, Jun Jun" uniqKey="Liu J" first="Jun-Jun" last="Liu">Jun-Jun Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sniezko, Richard A" sort="Sniezko, Richard A" uniqKey="Sniezko R" first="Richard A" last="Sniezko">Richard A. Sniezko</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sissons, Robert" sort="Sissons, Robert" uniqKey="Sissons R" first="Robert" last="Sissons">Robert Sissons</name>
<affiliation wicri:level="1">
<nlm:affiliation>Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Parks Canada, Waterton Lakes National Park, Waterton Park, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krakowski, Jodie" sort="Krakowski, Jodie" uniqKey="Krakowski J" first="Jodie" last="Krakowski">Jodie Krakowski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Alberta Agriculture and Forestry, Edmonton, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Alberta Agriculture and Forestry, Edmonton, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alger, Genoa" sort="Alger, Genoa" uniqKey="Alger G" first="Genoa" last="Alger">Genoa Alger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Parks Canada, Waterton Lakes National Park, Waterton Park, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schoettle, Anna W" sort="Schoettle, Anna W" uniqKey="Schoettle A" first="Anna W" last="Schoettle">Anna W. Schoettle</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Holly" sort="Williams, Holly" uniqKey="Williams H" first="Holly" last="Williams">Holly Williams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zamany, Arezoo" sort="Zamany, Arezoo" uniqKey="Zamany A" first="Arezoo" last="Zamany">Arezoo Zamany</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zitomer, Rachel A" sort="Zitomer, Rachel A" uniqKey="Zitomer R" first="Rachel A" last="Zitomer">Rachel A. Zitomer</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kegley, Angelia" sort="Kegley, Angelia" uniqKey="Kegley A" first="Angelia" last="Kegley">Angelia Kegley</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33042181</idno>
<idno type="pmid">33042181</idno>
<idno type="doi">10.3389/fpls.2020.557672</idno>
<idno type="pmc">PMC7522202</idno>
<idno type="wicri:Area/Main/Corpus">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000071</idno>
<idno type="wicri:Area/Main/Curation">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000071</idno>
<idno type="wicri:Area/Main/Exploration">000071</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations.</title>
<author>
<name sortKey="Liu, Jun Jun" sort="Liu, Jun Jun" uniqKey="Liu J" first="Jun-Jun" last="Liu">Jun-Jun Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sniezko, Richard A" sort="Sniezko, Richard A" uniqKey="Sniezko R" first="Richard A" last="Sniezko">Richard A. Sniezko</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sissons, Robert" sort="Sissons, Robert" uniqKey="Sissons R" first="Robert" last="Sissons">Robert Sissons</name>
<affiliation wicri:level="1">
<nlm:affiliation>Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Parks Canada, Waterton Lakes National Park, Waterton Park, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krakowski, Jodie" sort="Krakowski, Jodie" uniqKey="Krakowski J" first="Jodie" last="Krakowski">Jodie Krakowski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Alberta Agriculture and Forestry, Edmonton, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Alberta Agriculture and Forestry, Edmonton, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alger, Genoa" sort="Alger, Genoa" uniqKey="Alger G" first="Genoa" last="Alger">Genoa Alger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Parks Canada, Waterton Lakes National Park, Waterton Park, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schoettle, Anna W" sort="Schoettle, Anna W" uniqKey="Schoettle A" first="Anna W" last="Schoettle">Anna W. Schoettle</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Holly" sort="Williams, Holly" uniqKey="Williams H" first="Holly" last="Williams">Holly Williams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zamany, Arezoo" sort="Zamany, Arezoo" uniqKey="Zamany A" first="Arezoo" last="Zamany">Arezoo Zamany</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Forest Service, Natural Resources Canada, Victoria, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zitomer, Rachel A" sort="Zitomer, Rachel A" uniqKey="Zitomer R" first="Rachel A" last="Zitomer">Rachel A. Zitomer</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kegley, Angelia" sort="Kegley, Angelia" uniqKey="Kegley A" first="Angelia" last="Kegley">Angelia Kegley</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen
<i>Cronartium ribicola</i>
has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (
<i>Pinus flexilis</i>
), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using
<i>C. ribicola</i>
basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against
<i>C. ribicola</i>
, MGR in these seed families appears to be controlled by
<i>Cr4</i>
or other R genes in very close proximity to
<i>Cr4</i>
. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to
<i>C. ribicola</i>
, including NBS-LRR genes for recognition of
<i>C. ribicola</i>
effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33042181</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations.</ArticleTitle>
<Pagination>
<MedlinePgn>557672</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.557672</ELocationID>
<Abstract>
<AbstractText>Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen
<i>Cronartium ribicola</i>
has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (
<i>Pinus flexilis</i>
), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using
<i>C. ribicola</i>
basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against
<i>C. ribicola</i>
, MGR in these seed families appears to be controlled by
<i>Cr4</i>
or other R genes in very close proximity to
<i>Cr4</i>
. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to
<i>C. ribicola</i>
, including NBS-LRR genes for recognition of
<i>C. ribicola</i>
effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.</AbstractText>
<CopyrightInformation>Copyright © 2020 Liu, Sniezko, Sissons, Krakowski, Alger, Schoettle, Williams, Zamany, Zitomer and Kegley.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jun-Jun</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sniezko</LastName>
<ForeName>Richard A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sissons</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krakowski</LastName>
<ForeName>Jodie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Alberta Agriculture and Forestry, Edmonton, AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alger</LastName>
<ForeName>Genoa</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schoettle</LastName>
<ForeName>Anna W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Holly</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zamany</LastName>
<ForeName>Arezoo</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zitomer</LastName>
<ForeName>Rachel A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kegley</LastName>
<ForeName>Angelia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cronartium ribicola</Keyword>
<Keyword MajorTopicYN="N">association mapping</Keyword>
<Keyword MajorTopicYN="N">limber pine (Pinus flexilis)</Keyword>
<Keyword MajorTopicYN="N">major gene resistance (MGR)</Keyword>
<Keyword MajorTopicYN="N">marker-assisted selection (MAS)</Keyword>
<Keyword MajorTopicYN="N">plant effector-triggered immunity (ETI)</Keyword>
<Keyword MajorTopicYN="N">single nucleotide polymorphisms (SNPs)</Keyword>
<Keyword MajorTopicYN="N">white pine blister rust (WPBR)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>29</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33042181</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.557672</ArticleId>
<ArticleId IdType="pmc">PMC7522202</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Feb;111:234-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27951493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioData Min. 2011 Aug 16;4(1):24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2019 May 16;20(1):381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31096913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2019 May;98(4):745-758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30729601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jul;9(7):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Oct;14(8):813-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):854-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jul;26(7):3185-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Dec 30;14:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25547170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Dec 30;9(1):20341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31889067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Feb;124(2):233-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21915710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23463782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Dec;204(4):1613-1626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27794028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biomed Res. 2014 Feb 28;3:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24761393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Mar 01;15:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24581176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Oct;106(10):1139-1151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Epidemiol. 2019 Feb;43(1):24-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30387901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:357-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2002 Mar;92(3):278-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2018 Jan 1;2018:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30239664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2018 Mar 28;14:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29610576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Dec;1834(12):2647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24096100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Dec 7;6(12):3787-3802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):381-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20479505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Sep;15(9):1149-1162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28176454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 21;7:484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24840291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Feb;104(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23941780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Oct 24;26(20):2770-2778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27641773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2020 Jul 11;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32654344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 May 4;8(5):1461-1474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small GTPases. 2019 Sep;10(5):350-360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28644721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Hum Genet. 2009 Jan;Chapter 2:Unit 2.12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Feb 11;12(2):e1005789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26866607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 09;30(18):3812-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Oct;33(10):2692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Nov;76(3):530-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23937694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Epidemiol Biomarkers Prev. 2008 Sep;17(9):2208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Dec 16;14:884</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Sep 23;17(1):753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27663193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Dec;181(4):1704-1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31551361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2020 Jan 09;10:1639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31998332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jul 17;10(7):e1004445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Jun 11;5(8):1685-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26068575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380716</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Liu, Jun Jun" sort="Liu, Jun Jun" uniqKey="Liu J" first="Jun-Jun" last="Liu">Jun-Jun Liu</name>
</noRegion>
<name sortKey="Alger, Genoa" sort="Alger, Genoa" uniqKey="Alger G" first="Genoa" last="Alger">Genoa Alger</name>
<name sortKey="Krakowski, Jodie" sort="Krakowski, Jodie" uniqKey="Krakowski J" first="Jodie" last="Krakowski">Jodie Krakowski</name>
<name sortKey="Sissons, Robert" sort="Sissons, Robert" uniqKey="Sissons R" first="Robert" last="Sissons">Robert Sissons</name>
<name sortKey="Williams, Holly" sort="Williams, Holly" uniqKey="Williams H" first="Holly" last="Williams">Holly Williams</name>
<name sortKey="Zamany, Arezoo" sort="Zamany, Arezoo" uniqKey="Zamany A" first="Arezoo" last="Zamany">Arezoo Zamany</name>
</country>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Sniezko, Richard A" sort="Sniezko, Richard A" uniqKey="Sniezko R" first="Richard A" last="Sniezko">Richard A. Sniezko</name>
</region>
<name sortKey="Kegley, Angelia" sort="Kegley, Angelia" uniqKey="Kegley A" first="Angelia" last="Kegley">Angelia Kegley</name>
<name sortKey="Schoettle, Anna W" sort="Schoettle, Anna W" uniqKey="Schoettle A" first="Anna W" last="Schoettle">Anna W. Schoettle</name>
<name sortKey="Zitomer, Rachel A" sort="Zitomer, Rachel A" uniqKey="Zitomer R" first="Rachel A" last="Zitomer">Rachel A. Zitomer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000211 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000211 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33042181
   |texte=   Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33042181" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020